

The Dubner PC Cruncher

Programmers Guide

&

Function Reference

February 15, 1993

	Rev 1: July 9, 1995

Edited: August 15, 1997

Harvey Dubner

449 Beverly Road

Ridgewood, NJ 07450 USA

Tel: 		201-652-1825

Fax: 		201-358-9377

e-mail		70372.1170@compuserve.com

Robert Dubner

13 Westervelt Place

Westwood, NJ 07675-1921 USA

Tel:		201-664-6434

Fax:		201-358-9377

e-mail:	73247,2334@compuserve.com

�Hardware Installation

Hardware installation is very simple. Just make sure that only one of the eight switches on the switch block is ON, and plug the board into any empty slot of your PC. Some motherboards have dynamic RAM SIM modules in areas which violate the specifications for expansion board clearance; it may be necessary to carefully insert the circuit board between RAM modules.

Each DIP switch selects a block of sixteen I/O strobes. Switch 1 selects a base address of 0x280; switch 2 selects a base address of 0x290; and so on. Avoid using switch 7 or switch 8, because 0x2E0 conflicts with 8514/A display boards, and 0x2F0 conflicts with asynchronous communications port COM2.

Software Installation

Software installation is also straightforward. One diskette is marked "CRUNCHER DISTRIBUTION DISK"; just create a new directory on your hard drive, and copy all of the files on the diskette into your new directory.

The other disk is marked Zortech Compiler.

We use Symantec's Zortech C compiler, because it can conveniently generate 32-bit executable code, which is necessary for high-speed execution. The disk contains a self-extracting compressed file; just copy it into your root directory C:\ and execute the DOS command

	zortech -d

which will extract the files into the proper \ZORTECH directory structure.

If you install ZORTECH on some other drive, you will have to make some minor changes to the MAKEFILE in the \CRUNCH subdirectory.

In order to get ZORTECH to work, you will have to make some changes to your AUTOEXEC.BAT file:

	Add "c:\zortech\bin" to your PATH statement.

	Add the following commands:

		set lib=c:\zortech\lib

		set include=c:\zortech\include

	Don't forget to reset your computer, to make those changes active.

If you use more than one compiler in your computer, you may have some bookkeeping to do in order to avoid environment variable conflicts.

Compilation

To compile the Cruncher program, just switch to the directory that contains the Cruncher files, and enter the DOS command, "M". This invokes "m.bat", which in turn invokes the Zortech 'make' utility, which compiles and links all the source modules.

�Running the MAIN program

We have created what we think is a simple and effective way of accessing the Cruncher board's capabilities. To start our program, enter the DOS command "MAIN".

You will be confronted with a screen full of options. Note that 'e' means enter a number -- try it: just press 'e'.

Now, press 'b', and enter 1031, You can end it with an "Enter" if you wish. Note that down below, the value 1031 now appears in the b-register.

Press 'r'. This creates the repunit R1031 in the b-register. Now, press '3', which invokes a simple test for probable primeness. That test will run for about five seconds, and announce that the number is probably prime.

Enter 50000 into the b-register. Press 'r' to create R50000 in the b-register. Now, press '1' to take the square root of that number. Execution time will be on the order of two or three seconds.

Press the 'F7' key to show MENU3. Use the cursor keys to put the cursor under one of the functions in the menu. Press the 'F1' key to show a description of what that function does. (Not all functions have descriptions; if you miss, keep trying.)

You have all the source code for the system, the various functions in the various menus, and for the lower-level routines which drive the hardware. We expect that it will not take you long to figure out how to incorporate your own C-code into the framework that we have supplied.

�Introduction to Programming the Dubner PC Cruncher

The purpose of this section is to describe, in the most basic way, how to start using the Dubner PC Cruncher board.

The assumption at this point is that you have the board installed in your computer, and that you have some means of compiling and assembling the source-level code that was supplied with the cruncher. The intent of this section is to quickly demonstrate the basic means of using the supplied code to access the computational power of the Cruncher board.

We will do this by walking you through a simple example, based on a convenient way we have developed of using the software.

Our basic MAIN program is loosely based on a calculator. You probably have already run it, and noticed that you can enter, display, and manipulate numbers using various keys on the keyboard. Let's look at how you can add your own function to the MAIN program.

Let's assume that for some perverse reason you want to multiply together all the odd numbers that are less than or equal to some number that you enter. Do this:

	1)	Edit the file MENU4.HLP by adding the text 'Product of Odds' after the line that reads: 'User Function:'.

	2)	Edit the file MENU4.C by finding the function user_function() and editing it so that it looks like this:

		void

		user_function()

			{

			clear_screen();		/* Erases the entire screen */

			printf("Enter the limit for product-of-odds:\n");

			henter(cv);			/* The limit is in the C-register */

			hsetval(1,av);			/* Set the result to 1 */

			hsetval(1,bv);			/* Set intermediate to 1 */

			while(hcomp(cv,bv)>0)	/* Loop while cv > bv */

				{

				hincr(bv);		/* Increment the intermediate by 2 */

				hincr(bv);

				hmult(av,av,bv);	/* result *= intermediate */

				}

			printf("Product of odds is:\n");

			hdisp(av);			/* display the result */

			return;

			}

And that's all there is to it. Compile the code, start the MAIN program, press the 'MENU4' button (F8), and press the 'u' key to invoke your new function.

If you wish to eliminate our MAIN.C and BSYS.C modules, and to write your own code to drive the lower-level routines, you'll need to keep the following files and their associated header files:

		

	crunch.c

	cruncha.asm		

	hfuncs.c

	screen.c

Just be sure to call hinit() before trying to do anything else.

�Basic Operation

The Cruncher board is physically attached to the ISA expansion bus, which is hideously and grotesquely slow. On a 486/33, you can just barely transfer four megabytes per second over that bus under the best of circumstances. That's why the Cruncher board has its own on-board memory.

Basically, the Cruncher consists of a 256K operand memory (which we call the left-side memory), 64K of high-speed accumulation memory (which we call the right-side memory), and a high-speed multiply/add circuit in the middle. The various registers in which we store huge integer numbers are all located in the left side memory.

That distinction is important -- references to the left- and right-side memories appear often in the code. If you stick to higher level functions (add, subtract, multiply, and the like) you'll never need to worry about them. If you are concerned about how the Cruncher works, and try to decipher the code, you'll need to understand that between operations, nothing important is kept on the right side, and all values are stored on the left side. In the middle of a multiply or divide, intermediate results are maintained in the right-side memory.

It may take a little getting used to, but when operating on and working with big numbers, there generally is no need for you to have them in the host memory; in fact there is probably little need for you to look at them directly at all. We have supplied a whole bunch of routines for creating and manipulating numbers in the left-side operand memory. There are also a handful of routines for transferring data between the left-side memory and the host memory and disk. We hope that you can restrain the temptation to over-use those routines -- as an example, the PC Cruncher can multiply two 1,000-digit numbers in less than 400 microseconds. If you insist on keeping the operands in the host CPU memory, you'll discover that it will take you an additional 400 microseconds to transfer two 1,000-digit operands into the Cruncher, and another 400 microseconds to transfer the 2,000-digit product back out. So, for maximum speed, keep your operands in the Cruncher's left-side memory.

Register Utilization

The system operates on what we call 'huge registers'. The word 'huge' has nothing whatsoever to do with 'huge memory models' -- it is a holdover from definitions we created years before Microsoft invented the term.

The subroutines that operate on huge registers do so via a pointers to structures which contain the inportant information relating to those registers; their location in the Cruncher's on-board memory and their length and so on. The definition of the 'struct HREG' structure can be found in the include file 'hfuncs.h'.

The 32 predefined registers should suffice for most ordinary purposes. Each is 6144 bytes in length, which means that they can hold about 14,487 decimal digits. The registers marked 'Double' are twice that size, and can hold 29,284 digits. (Those digit counts represent the number of digits in a register of that size less 128 bytes, which gives the software some 'breathing room' for normalizations and overflows. The registers are located in memory in the following order:

 	av		(Double)

 	gv

 	hv

 	bv		(Double)

 	iv

 	jv

 	cv		(Double)

 	kv

 	lv

 	dv		(Double)

 	ev

 	fv

 	tempv1	(Double)

 	mv

 	nv

 	tempv2 	(Double)

 	ov

 	pv

 	tempv3 	(Double)

 	qv

 	rv

 	tempv4 	(Double)

 	sv

 	tv

 	tempv5 	(Double)

 	uv

 	vv

 	tempv6 	(Double)

 	wv

 	xv

 	yv

 	zv

For occasions when you need to know how big the registers are (see the example for make_hreg()), there is a defined constant called binsize which is the number of bytes in a single-sized register. Anyone who wants to avoid using 'magic numbers' in their code should use binsize instead.

There is no size-checking anywhere, and the manipulation of the registers is up to the user. For example, if you place two 29,000 digit values in the bv and cv registers, and then multiply them and put the result into the av register, that will work fine -- the 58,000 digit result will go into memory at the av register location, which means that the gv and hv registers will be destroyed. There is no problem doing this -- the user simply has to be aware of what's going on.

There are six 'tempv' registers. Tempv4, tempv5, and tempv6 are not currently used by the system; tempv1, tempv2, and tempv3 are. They should be used with caution -- the alphabetical listing attempts to detail which registers are used by what functions. But the contents of those registers should definately be regarded as volatile.

�Summary of supplied functions

>>> Basic math routines

	hadd (sum,a,b)			Calculates sum = a + b

	hsub (diff,a,b)			Calculates diff = a � b

	hmult(prod,a,b)			Calculates prod = a · b

	hdiv (q,a,b)				Calculates q = a ¸ b and a = a MOD b

	hdivide(q,r,a,b)			Calculates q = a ¸ b and r = a MOD b

	hmod (r,a,b)				Calculates r = a MOD b

	hquotient(q,a,b)			Calculates q = a ¸ b

	hincr(reg) 				Increments reg

	hdecr(reg) 				Decrements reg, returns -1, 0, +1

	habs(reg)				Takes absolute value of reg

	hnegate(reg)				Flips sign of reg

>>> Utility routines

	hmove(from,to) 			Copies register 'from' to register 'to'

	hshorten(reg) 			Adjusts 'reg' by throwing off high�order zero bytes

	htest(reg) 				Tests reg for positive, negative, or zero

	hnorm(reg)				Pre-normalizes 'reg' for division

	hdenorm(reg)			Undoes the effect of hnorm(reg)

	hdisp_count_digits(reg)		Returns the number of decimal digits in reg

	hgetval(reg) 				Returns the (unsigned long) value of reg (reg<232)

	hgetsval(reg)				Returns the (long) value of reg (abs(reg)<231)

	hcomp(a,b) 				Returns +1, 0, or �1 based on the value of (a�b)

	his_ulong(reg,N) 			Returns 1 if reg is equal to (unsigned long)N

	

>>> Higher math routines

	hpower(a,base,exp) 		Calculates a = base exp

	hpowerm(a,b,c) 			Calculates a = bc MOD a

	hdiv2k(dest,source,k)		Calculates dest = source ¸ 2k

	hmul2k(dest,source,k)		Calculates dest = source ° 2k

	hmod2k(dest,source,k)		Calculates dest = source MOD 2k

	hsqrt(root,reg) 			Calculates root = SquareRoot(reg)

	hfact(fact,reg) 			Calculates fact = reg!

	hisprime(reg) 			Returns 1 if reg contains a prime number (reg<232)

	isprime(N) 				Returns 1 if (unsigned long)N is a prime number

	hpop(pop,reg) 			Calculates pop = product of primes up to the number in reg

	hpopn(pop,N) 			Calculates pop = product of primes up to (unsigned long)N

	hpop_range(pop,a,b) 		Calculates pop = product of primes between registers a and b

	hpopn_range(pop,NS,NF) 	Calculates pop = product of primes between integers NS and F

	htestprime(reg) 			Returns 1 if the Fermat test 3REG MOD REG is equal to 3

	hgcd(g,a,b) 				Calculates g = gcd(a,b)

	hgcdsmall(reg,N1,N2) 		Calculates reg = gcd(N1,N2), where N1 and N2 are integers

	hrepunit(out,in) 			Calculates out = repunit(in) = (10in � 1)¸9

>>> Input routines

	hsetval(N,reg) 			Sets reg to (unsigned long)N

	hsetsval(N,reg);			Sets reg to (long)N

	hstring(s,reg) 			Sets reg to the decimal number in ASCII string s[]

	henter(reg) 				Keyboard entry of reg

	

>>> Output routines

	hdisp(reg) 				Displays reg in decimal, limited to one line of video

	hdispa(reg) 				Displays all the digits of reg

	hdispx(reg) 				Displays reg in decimal, on one line, without a digit count

	fhdisp(stream,reg) 			Like hdisp(), with the output going to 'stream'

	fhdispa(stream,reg) 		Like hdispa(), with the output going to 'stream'

	fhdispx(stream,reg) 		Like hdispx(), with the output going to 'stream'

	shdisp(buffer,reg) 			Like hdisp(), with the output going into 'buffer'

	shdispa(buffer,reg) 		Like hdispa(), with the output going into 'buffer'

	shdispx(buffer,reg) 		Like hdispa(), with the output going into 'buffer'

>>> Register I/O (disk and memory)

	save_hreg(reg,stream)		Writes a register onto disk file 'stream'

	restore_hreg(reg,stream)		Reads a register from disk file 'stream'

	push_hreg(reg)			Pushes 'reg' onto a main-memory pseudo-stack

	pop_hreg(reg)			Pops a register from the pseudo-stack, places it in 'reg'

	hreg_to_host(reg)			Copies 'reg' to a newly-allocated buffer in host memory.

	host_to_hreg(buffer,reg)		Copies a value in buffer to 'reg'; de-allocates buffer.

	host_to_hreg_keep(buffer,reg)	Copies a value in buffer to 'reg'; buffer remains.

>> Special�purpose utility routines

	hinit() 				Initializes the cruncher hardware

	make_hreg(reg,offset) 		Returns a new register that is 'offset' bytes away from 'reg'

	free_hreg(reg);			Deallocates the memory space dynamically allocated by

						make_hreg();

>>> Output routines useful for debugging

	hdump(reg) 				Dumps 'reg' in hex

	dump_right(loc,N) 			Dumps N bytes from location 'loc' in the right�side memory

	dump_left(loc,N) 			Dumps N bytes from location 'loc' in the left�side memory

>>> Low�level cruncher memory utilities

	put_left(adr,b) 				Puts byte b into location adr on the left side

	get_left(adr) 					Returns the byte in location adr on the left side

	put_right(adr,b) 				Puts byte b into location adr on the right side

	get_right(adr) 				Returns the byte in location adr on the right side

	move_right_to_left(right,left,count) 	Moves count bytes from right to left

	move_left_to_right(left,right,count) 	Moves count bytes from left to right

	zero_right(adr,count) 			Zeroes count bytes at location adr on the right side

	get_left_ulong(adr) 				Returns the four�byte value at location adr on the left side

	host_to_left(hostaddr, left, count) 	Moves a block from the host to the left side

	host_to_right(hostaddr, right, count) 	Moves a block from the host to the right side

	left_to_host(left, hostaddr, count) 	Moves a block from the left side to the host

	right_to_host(right, hostaddr, count) 	Moves a block from the right side to the host

�Discussion of Division

At the heart of our division routine is a structure which traces its evolutionary roots back to Donald Knuth's Algorithm D. There have been some changes, however; the underlying assumption of Algorithm D is that the computer's basic instruction execution time is fast relative to the single-place division time. We, however, are working with very large numbers, whose 'digit' is a 512-bit number -- those assumptions don't work well.

Algorithm D, in a nutshell, is this: The denominator is left-shifted bit-wise until the highest-order bit of the denominator is on. (Said another way, operating in base B, the denominator is left-shifted until the denominator is >=B/2.) The numerator is then left-shifted by the same amount.

The quotient is then built from the high-end downward, much like long division is executed by hand. Each successive 'guess' is found by dividing the top two places of the working numerator by the top place of the denominator. (That guess is guaranteed to be not less than, and no more than the correct value +2; see Knuth for more details.) That 'guess' is multiplied by the entire denominator; the resulting product is subtracted from the working denominator. Thus, the division is done by successive multiplications.

The Cruncher is optimized for multiplication -- that's what the hardware does. That innocent statement, "...dividing the top two places of the working numerator by the top place of the denominator..." represents a 1,024-bit by 512-bit division -- which on a 486/33 takes on the order of 600 microseconds. This is appalling, given that you will find that in 600 microseconds, your Cruncher can square a 1,500-digit number. Something had to be done to get rid of this 'division overhead' lest division become much slower than multiplication.

Our solution: instead of doing a two-place by one-place division, we calculate the inverse of the top place of the normalized denominator. Each time through the divide loop, we multiply by the inverse. Calculating that inverse does take 600 to 1000 microseconds (depending on the speed of your machine), but it only occurs once per division.

When a number is first used as a denominator, the inverse of the normalized top place is calculated and appended to the main body of the number. Thus, if a number is ever used as a denominator, no time is spent on calculating the inverse if it used again as a denominator. This is all automatic, and requires no user intervention; the point of the discussion is to explain why division by assorted different numbers executes more slowly than repeated divisions by the same number.

If you know that you are going to be repeatedly dividing by one number, you can speed things up a bit by pre-normalizing it with the hnorm() routine. Once pre-normalized, you avoid the overhead associated with repeatedly left-shifting the denominator. See the code for the hpowerm() function for an example.

The division routines can handle negative numbers. The assumption is that

	QUOTIENT * DENOMINATOR + REMAINDER = NUMERATOR

The resulting possibilities are:

Numerator�Denominator�Quotient�Remainder��+�+�+�+��-�+�-�-��+�-�-�+��-�-�+�-��

�Alphabetical Function List

�

dump_left

Usage

#include "hfuncs.h"

void dump_left(ulong location, ulong count);

Description

Does a hexadecimal dump from the left-side memory. It displays count bytes starting at location.

�

dump_right

Usage

#include "hfuncs.h"

void dump_right(ulong location, ulong count);

Description

Does a hexadecimal dump from the right-side memory. It displays count bytes starting at location.

�

fhdisp

Usage

#include "hfuncs.h"

#include <stdio.h>

int fhdisp(FILE *fp,hreg *reg);

Description

Similar to hdisp(), but it sends the display of the register's contents to the output stream fp instead of to the monitor.

Example

#include "hfuncs.h"

#include <stdio.h>

main()

{

FILE *out_file;

hsetval(19,dv);

fhdisp(out_file,dv);

}

Return Value

The return value is the number of characters sent to the output stream.

�

fhdispa

Usage

#include "hfuncs.h"

#include <stdio.h>

int fhdispa(FILE *out_file, hreg *reg);

Description

Similar to hdispa(), but it sends the output to the stream out_file instead of to the monitor.

Return Value

The return value is the number of characters sent to the output stream.

�

fhdispx

Usage

#include "hfuncs.h"

#include <stdio.h>

int fhdispx(FILE *out_file, hreg *reg);

Description

Similar to hdispx(), but the output is sent to the stream outfile instead of to the monitor.

Return Value

The return value is the number of characters sent to the output stream.

�

free_hreg

Usage

#include "hfuncs.h"

void free_hreg(hreg *register);

Description

Undoes the effect of make_hreg(). See that description.

�

get_left

Usage

#include "crunch.h"

uchar get_left(ulong left_address);

Description

Returns the byte at location left_address from the Cruncher's left-side memory. See put_left().

�

get_left_ulong

Usage

#include "crunch.h"

ulong get_left(ulong left_address);

Description

Returns the 32-bit value at location left_address from the Cruncher's left-side memory.

�

get_right

Usage

#include "crunch.h"

uchar get_right(ulong right_address);

Description

Returns the byte at location right_address from the Cruncher's right-side memory. See put_right().

�

habs

Usage

#include "hfuncs.h"

void habs(hreg *register);

Description

Sets register to its own absolute value;

�

hadd

Usage

#include "hfuncs.h"

void hadd(hreg *sum, hreg *val1, hreg *val2);

Description

Adds any two big registers together, puts the result into any third.

Example

#include "hfuncs.h"

main()

{

hinit();

hsetval(3,bv);

hsetval(5,cv);

hadd(av,bv,cv);/* av will contain eight */

hadd(av,av,cv);/* av will contain 13 */

hadd(av,av,av);/* av will contain 26);

}

�

hcomp

Usage

#include "hfuncs.h"

int hcomp(hreg *val1, hreg *val2);

Description

Performs the subtraction val1 - val2 and returns +1, 0, or -1 depending on the result.

Example

#include "hfuncs.h"

main()

{

int i;

hinit();

hsetval(3,bv);

hsetval(5,cv);

i = hcomp(bv,cv);/* i = -1 */

i = hcomp(cv,bv);/* i = +1 */

i = hcomp(cv,cv);/* i = 0 */

}

Return Value

Returns +1 if val1 > val2.

Returns -1 if val1 < val2.

Return 0 if val1 == val2.

Remarks

hcomp() destroys the value in tempv1.

�

hdecr

Usage

#include "hfuncs.h"

int hdecr(hreg *register);

Description

Decrements register by one.

Return Value

Returns -1 if the result is negative; 0 if the result is 0; +1 if the result is greater than 0.

�

hdenorm

Usage

#include "hfuncs.h"

void hdenorm(hreg *reg);

Remarks

Undoes the action of hnorm(). See the description for that function.

�

hdisp_count_digits

Usage

#include "hfuncs.h"

int hdisp_count_digits(hreg *register)

Description

Calculates the number of decimal digits in register.

Example

#include "hfuncs.h"

main()

{

int digits;

hinit();

hstring("123456789",bv);

digits = hdisp_count_digits(bv);

/* digits will be 9 */

}

Return Value

hdisp_count_digits() returns the number of decimal digits in a big register.

Remarks

hdisp_count_digits() destroys the values in tempv1, tempv2, and tempv3.

�

hdisp

Usage

#include "hfuncs.h"

int hdisp(hreg *register);

Description

This is possibly the most often-used numeric display routine.

If a complete number will fit on one line, it shows the digit count of the number in parentheses, and follows that with the number.

Otherwise, it puts out the highest group of digits, follows with the count in parentheses, and then finishes up with the lowest group of digits.

Return Value

The return value is the number of characters that were output to the monitor.

Remarks

hdisp() destroys the values in tempv1, tempv2, and tempv3.

�

hdispa

Usage

#include "hfuncs.h"

int hdispa(hreg *register);

Description

Converts a huge register to decimal and displays all of the decimal digits on the video screen.

Return Value

The return value is the number of characters that were output to the monitor.

Remarks

hdispa() destroys the values in tempv1, tempv2, and tempv3.

This routine has not been optimized for speed -- displaying numbers that have more than a few thousand digits can take a minute or two.

�

hdispx

Usage

#include "hfuncs.h"

void hdispx(hreg *register);

Description

Similar to hdisp() except that in the case where the complete number will fit on one line, the digit count is eliminated.

Return Value

The return value is the number of characters that were sent to the monitor.

Remarks

hdispa() destroys the values in tempv1, tempv2, and tempv3.

�

hdiv

Usage

#include "hfuncs.h"

int hdiv(hreg *quot, hreg *num_rem, hreg * denom);

Description

hdiv() divides num_rem by denom, and places the quotient in quot and places the remainder in num_rem. The return value indicates whether or not the remainder is non-zero.

Example

#include "hfuncs.h"

main()

{

int i;

hinit()

hsetval(11,bv);

hsetval(4,cv);

i = hdiv(av,bv,cv); /* av = 2; bv = 3; i = 1 */

hsetval(8,cv);

hsetval(4,dv);

i = hdiv(av,bv,cv); /* av = 2; bv = 0; i = 0 */

}

Return Value

The integer return value reflects whether the remainder is zero; if the remainder is zero, so is the return value.

Remarks

Because of the way the division routine is implemented, not all combinations of registers are possible. When calling hdiv(), you must ensure that quot is not the same as denom; all other combinations are legitimate.

See the section, "Discussion of Division."

�

hdiv2k

Usage

#include "hfuncs.h"

void hdiv2k(hreg *result, hreg *source, ulong K)

Description

Does a high-speed right-shift of source by K bits; puts the result into result. There are no restrictions on register usage.

�

hdivide

Usage

#include "hfuncs.h"

int hdivide(hreg *quotient, hreg *remainder,

 hreg *numerator, hreg * denominator);

Description

hdivide() divides numerator by denominator, places the quotient in quotient and places the remainder in remainder. The return value indicates whether or not the remainder is non-zero.

Example

#include "hfuncs.h"

main()

{

int i;

hinit()

hsetval(11,cv);

hsetval(4,dv);

i = hdivide(av,bv,cv,dv); /* av = 2; bv = 3; i = 1 */

hsetval(8,cv);

hsetval(4,dv);

i = hdivide(av,bv,cv,dv); /* av = 2; bv = 0; i = 0 */

}

Return Value

The integer return value reflects whether the remainder is zero; if the remainder is zero, so is the return value.

Remarks

Because of the way the division routine is implemented, not all combinations of registers are possible. When calling hdivide(), you must ensure that quotient is not the same as denominator; all other combinations are legitimate.

See the section, "Discussion of Division."

�

hdump

Usage

#include "hfuncs.h"

void hdump(hreg *register);

Description

Does a hexadecimal dump of a big register. It displays the left-side location of the register, it displays the number of bytes in the register, and then it does a hexadecimal dump of the bytes that comprise the register. The register is displayed most-significant byte first.

�

henter

Usage

#include "hfunc.h"

void henter(hreg *register);

Description

Keyboard entry of a big register. A running count of the number of digits is displayed. The <Backspace> key can be used to back up and make corrections. The '-' key can be used to enter negative numbers. Any other character that is not a digit causes the input process to end; the terminating key is left in the keyboard input buffer.

Remarks

henter() destroys the values in tempv1 and tempv2.

�

hfact

Usage

#include "hfuncs.h"

void hfact(hreg *destination, hreg *source);

Description

Calcutes the product of all integers up to the value in source and places the result in destination.

Remarks

hfact() destroys the value in tempv1.

�

hgetsval

Usage

#include "hfuncs.h"

long hgetsval(hreg *reg);

Description

Returns a 32-bit signed value based on the value of reg. The value in reg must be 31 bits or less in length.

�

hgetval

Usage

#include "hfuncs.h"

ulong hgetval(hreg *reg);

Description

Returns a 32-bit unsigned value based on the value of reg. The value in reg must be 32 bits or less in length.

�

hgcd

Usage

#include "hfuncs.h"

int hgcd(hreg *destination, hreg *val1, hreg *val2);

Description

Places the greatest common divisor of val1 and val2 into destination.

Remarks

The values in tempv1 and tempv2 are both destroyed by hgcd().

Return Value

Returns 1 if the greatest common divisor is one, otherwise it returns 0.

�

hgcdsmall

Usage

#include "hfuncs.h"

int hgcdsmall(hreg *destination, ulong N1, ulong N2);

Description

Sets destination to be the greatest common divisor of N1 and N2.

Return Value

Returns 1 if the greatest common divisor is one, otherwise it returns 0.

�

hincr

Usage

#include "hfuncs.h"

void hincr(hreg *register);

Description

Increments register by one.

�

hinit

Usage

#include "hfuncs.h"

void hinit(void);

Description

hinit() must be called before any attempt is made to use the Cruncher hardware. This routine initializes the hardware and sets the Cruncher memory and any critical variables to known values.

Example

#include "hfuncs.h"

main()

{

hinit();/*Initializes the cruncher*/

}

Remarks

hinit() sets all the big registers to zero. It should be the first thing you do when you start your program, but there is no need to call it more than once.

�

his_ulong

Usage

#include "hfuncs.h"

int his_ulong(hreg *register, ulong N)

Description

his_ulong() compares the value in register to unsigned long N. Returns 1 if they are equal, zero otherwise.

Return Value

1 means that the register contained N, 0 if they are not equal.

�

hisprime

Usage

#include "hfuncs.h"

int hisprime(hreg *register);

Description

hisprime() assumes that the value in register is less than 2**32. It calls the isprime() function to determine whether or not that value is prime.

Example

#include "hfuncs.h"

main()

{

int flag;

hinit();

hsetval(11,av);

flag = hisprime(av); /* flag will be set to 1 */

}

Return Value

1 means that the calling value is prime; 0 means that it is not.

�

host_to_left

Usage

#include "crunch.h"

void host_to_left(void *hostadd, ulong leftadd, ulong count);

Description

Copies count bytes from the main CPU's memory at location hostadd to location leftadd in the Cruncher's left-side memory.

�

host_to_hreg

Usage

#include "hfuncs.h"

void host_to_hreg(uchar *buffer, hreg *reg);

Description

Undoes the effect of hreg_to_host(). The contents of buffer are copied from the host CPU's memory into reg, and then buffer is returned to the operating system.

�

host_to_hreg_keep

Usage

#include "hfuncs.h"

void host_to_hreg_keep(uchar *buffer, hreg *reg);

Description

Undoes the effect of hreg_to_host(). The contents of buffer are copied from the host CPU's memory into reg. buffer is kept intact, it is not returned to the operating system.

�

host_to_right

Usage

#include "crunch.h"

void host_to_right(void *hostadd, ulong rightadd, ulong count);

Description

Copies count bytes from the main CPU's memory at location hostadd to location rightadd in the Cruncher's right-side memory.

�

hmod

Usage

#include "hfuncs.h"

int hmod(hreg *remainder,

 hreg *numerator, hreg * denominator);

Description

hmod() divides numerator by denominator, discards the quotient, and places the remainder in remainder. The return value indicates whether or not the remainder is non-zero.

Example

#include "hfuncs.h"

main()

{

int i;

hinit()

hsetval(11,bv);

hsetval(4,cv);

i = hmod(av,bv,cv); /* av = 3; i = 1 */

hsetval(8,cv);

hsetval(4,dv);

i = hmod(av,bv,cv); /* av = 0; i = 0 */

}

Return Value

The integer return value reflects whether the remainder is zero; if the remainder is zero, so is the return value.

Remarks

The hmod() routine handles negative numbers in much the same way that the other divide routines do, except that if the result is negative, the absolute value of the denominator is added to the negative modulo in order to get a positive result. For example, dividing �10 by -3 results in a remainder of -1; in the hmod() function that -1 is further processed into a +2.

There are no restrictions on register usage for hmod()when the remainder is positive. If the remainder is negative, then the denominator must still be available to the routine to do the final calculation -- said another way, when the remainder might initially be negative, then the denominator and the remainder cannot be the same register.

�

hmod2k

Usage

#include "hfuncs.h"

int hmod2k(hreg *result, hreg *source, ulong K);

Description

Rapidly strips off the low-order K bits of source; places them in result. There are no restrictions on register utilization.

�

hmove

Usage

#include "hfuncs.h"

void hmove(hreg *from, hreg *to);

Description

Copies the from register to the to register.

�

hmul2k

Usage

#include "hfuncs.h"

void hmul2k(hreg *result, hreg *source, ulong K);

Description

Does a high-speed left-shift of source, places it in result. There are no restrictions on register utilization.

�

hmult

Usage

#include "hfuncs.h"

void hmult(hreg *product, hreg *val1, hreg *val2);

Description

Multiplies any two big registers, stores the result in any third.

Example

#include "hfuncs.h"

main()

{

hinit();

hsetval(3,bv);

hsetval(4,cv);

hmult(av,bv,cv);/* av = 12 */

hmult(av,av,av);/* av = 144 */

}

�

hnegate

Usage

#include "hfuncs.h"

int hnegate(hreg *register);

Description

Efficiently multiplies register by -1.

Return Value

The function returns -1 if the result is less than zero, 0 if the result is zero, and +1 if the result is greater than zero.

�

hnorm

Usage

#include "hfuncs.h"

void hnorm(hreg *reg);

Description

Pre-normalizes a register for repeated division. See the section, "Discussion of Division."

Remarks

There is no speed advantage to pre-normalization of a number unless that number is going to be a denominator in an innermost loop. The program module "hfuncs2.c" contains the routine hpowerm(); you might examine it for an example.

The routine hdenorm() undoes the action of hnorm().

�

hpop

Usage

#include "hfuncs.h"

void hpop(hreg *dest, hreg *source);

Description

Calculates the product of all the primes up to the value in source. The result is placed in destination.

Remarks

hpop() destroys the value in tempv1.

�

hpop_range

Usage

#include "hfuncs.h"

void hpop_range(hreg *destination,hreg *start, hreg *finish);

Description

Sets destination to the product of primes in the range of start to finish.

Remarks

hpop_range() destroys the value in tempv1.

�

hpopn

Usage

#include "hfuncs.h"

void hpopn(hreg *destination, ulong number);

Description

Sets destination to be the product of all primes up to the value number.

Remarks

hpopn() destroys the value in tempv1.

�

hpopn_range

Usage

#include "hfuncs.h"

void hpopn_range(hreg *destination, ulong start,ulong finish);

Description

Sets destination to be the product of all primes in the range of start to finish.

Remarks

hpopn_range() destroys the value in tempv1.

�

hpower

Usage

#include "hfuncs.h"

void hpower(hreg *result, hreg *base, hreg *exponent);

Description

Calculates result = base ** exponent.

Example

#include "hfuncs.h"

main()

{

hsetval(10,bv);

hsetval(10000,cv);

hpower(av,bv,cv);/* av = 10 ** 10000 */

}

Remarks

This routine assumes that the value in exponent has less than 24 bits.

�

hpowerm

Usage

#include "hfuncs.h"

void hpowerm(hreg *A, hreg *B, hreg *C);

Description

Calculates A = B**C MOD A.

Example

#include "hfuncs.h"

main()

{

/* Example of a Fermat test */

hinit();

hsetval(111,cv);

hmove(cv,av);

hsetval(3,bv);

hpowerm(av,bv,cv); /* replaces av with 3**111 MOD 111 */

}

Remarks

B and C must both be positive.

hpowerm() destroys the value in tempv2.

�

hquotient

Usage

#include "hfuncs.h"

void hquotient(hreg *quotient,

hreg *numerator, hreg * denominator);

Description

hquotient() divides numerator by denominator, and places the quotient in quotient . There is no return value.

Example

#include "hfuncs.h"

main()

{

hinit()

hsetval(11,bv);

hsetval(4,cv);

i = hquotient(av,bv,cv); /* av = 2 */

}

Return Value

There is no return value.

Remarks

Because of the way the division routine is implemented, not all combinations of registers are possible. When calling hquotient(), you must ensure that quotient is not the same as denominator; all other combinations are legitimate.

�

hreg_to_host

Usage

#include "hfuncs.h"

uchar *hreg_to_host(hreg *register);

Description

Allocates a memory buffer in the host CPU's memory that is large enough to hold the value in register. That value gets copied over from the Cruncher memory into the buffer.

Return Value

The return value is the location of that buffer.

Example

uchar *our_location;

.

our_location = hreg_to_host(av);

.

host_to_hreg(our_location,bv);	

/* The value that was in av is now in bv */

Remarks

There are two routines for undoing hreg_to_host(). They are host_to_hreg() (which returns the dynamically-allocated buffer to the operating system) and host_to_hreg_keep(), (which doesn't.)

Check out the push_hreg() and pop_hreg() routines, which push and pop huge registers onto a pseudo-stack in the main CPU's memory.

�

hrepunit

Usage

#include "hfuncs.h"

void hrepunit(hreg *destination, hreg *source);

Description

Sets destination to be the repunit specified by the value in source.

Example

#include "hfunc.h"

main()

{

hinit();

hsetval(2,bv);

hrepunit(av,bv);/* Sets av to 11 */

hrepunit(av,av);/* Sets av to 11111111111 */

}

Remarks

hrepunit() destroys the values in tempv1 and tempv2.

�

hsetsval

Usage

#include "hfuncs.h"

void hsetsval(long svalue, hreg* destination);

Description

Converts the 32-bit signed value to a big register destination.

Example

#include "hfuncs.h"

main()

{

hinit();

hsetsval(1,bv);

hsetsval(-1234567,cv);

}

�

hsetval

Usage

#include "hfuncs.h"

void hsetval(ulong value, hreg* destination);

Description

Converts the 32-bit value to a big register destination.

Example

#include "hfuncs.h"

main()

{

hinit();

hsetval(1,bv);

hsetval(1234567,cv);

hsetval(0xAAAAAAAA,dv);

}

�

hshorten

Usage

#include "hfuncs.h"

int hshorten(hreg *register);

Description

Ensures that register has no extraneous high-order bytes of value zero. It is designed for internal use by the subtraction and divide routines. If you only use higher-level calls, you should never need this routine. If you manipulate bytes in the registers directly, you may need this; division in particular will crash if there are high-order zero bytes in the registers.

Return Value

Returns -1 if the register is negative, +1 if it is greater than zero, and 0 if the register is zero.

Remarks

The various mathematical routines all assume that numbers are properly normalized. Strange things may occur with add, subtract, and multiply if the parameters have high-order zero bytes, and the divide routines will likely fail with an "ILLEGAL INTERRUPT #00" message, meaning that there was an overflow or divide-by-zero.

�

hsqrt

Usage

#include "hfuncs.h"

void hsqrt(hreg *destination, hreg *source);

Description

Uses Newton's method of approximation to calculate the square root of source and places it in destination.

Remarks

The source and destination registers can be the same. hsqrt() destroys the values in tempv1, temp2, and tempv3.

�

hstring

Usage

#include "hfuncs.h"

void hstring(char *string, hreg *destination);

Description

Converts a '\0'-terminated string of arbitrary length to to decimal, and places that value in destination.

Example

#include "hfuncs.h"

main()

{

hinit();

hstring("123",bv);

hstring("1234567890987654321",cv);

}

Remarks

This routine is limited only by the compiler's ability to handle strings. There is no error checking: if you stick an 'A' into the string, the hstring() routine will do the subtraction 'A' - '0' and add that result into the value it is building at destination.

hstring() destroys the contents of tempv1.

�

hsub

Usage

#include "hfuncs.h"

int hsub(hreg *difference, hreg *val1, hreg *val2);

Description

Subtracts any big register from any other, puts the result into any third. Negative numbers are handled properly.

Example

#include "hfuncs.h"

main()

{

int sign;

hinit();

hsetval(5,bv);

hsetval(3,cv);

sign = hsub(av,bv,cv); /* av = 2; sign = +1 */

sign = hsub(av,cv,bv); /* av = -2; sign = -1 */

sign = hsub(av,av,av); /* av = 0; sign = 0 */

}

Return Value

The return value is +1, -1, or 0, depending on whether the result of the subtraction is greater than zero, negative, or zero.

�

htest

Usage

#include "hfuncs.h"

int htest(hreg *register);

Description

Tests a big register for zero, greater-than-zero, or negative.

Return Value

Returns -1 if the register is negative, +1 if it is greater than zero, and 0 if the register is zero.

�

htestprime

Usage

#include "hfuncs.h"

int htestprime(hreg *register)

Description

Calculates 3**register MOD register and returns a value indicating whether or not the result is 3.

Example

#include "hfuncs.h"

main()

{

int flag;

hinit();

hsetval(11,bv);

flag = htestprime(bv);/* flag = 1 */

}

Return Value

In spite of its name, testprime() is not a strict test for primality.

A return value of 1 indicates that the result of the 3**N mod N was 3, which means that N is probably prime.

A return value of 0 means that the result was something other than 3, guaranteeing that N is composite.

Remarks

htestprime() destroys the values in tempv1 and tempv2.

�

isprime

Usage

#include "hfuncs.h"

int isprime(ulong number);

Description

This routine determines if number is prime by dividing it by all the prime numbers up to the square root of number.

Example

#include "hfuncs.h"

main()

{

int flag;

hinit();

flag = isprime(100); /* flag = 0 */

flag = isprime(2); /* flag = 1 */

}

Return Value

A return value of 1 means that number is prime; a return value of 0 means that it is not.

�

left_to_host

Usage

#include "crunch.h"

void left_to_host(ulong leftadd, void *hostadd, ulong count);

Description

Moves count bytes from leftadd in the Cruncher's left-side memory to hostadd in the host CPU memory.

�

make_hreg

Usage

#include "hfuncs.h"

hreg *make_hreg(hreg *base, long offset);

Description

make_hreg() supplies a pointer to a new structure defining a new big register. The calling routine supplies the base, which is the register to use as a starting point. The calling routine also supplies an offset, which is used to determine where the new register will go relative to the base.

Example

#include "hfuncs.h"

main()

{

hreg *mine1, *mine2, *mine3;

hinit();

/* create a register 100 bytes into av */

mine1 = make_hreg(av,100);

/* create a register 200 bytes before the end of av */

mine2 = make_hreg(av,2*binsize-200);

/* create a register 150 bytes before the start of bv */

mine3 = make_hreg(bv,-150);

/* Now we can use those new registers */

hsetval(3,mine2);

hsetval(4,mine3);

hadd(mine1,mine2,mine3);

/* When done with the registers, give the structure space

 back to the operating system */

free_hreg(mine1);

free_hreg(mine2);

free_hreg(mine3);

}

Return Value

The return value is a pointer to an hreg structure.

Remarks

The free_hreg() function undoes the effect of make_hreg().

�

move_left_to_right

Usage

#include "hfuncs.h"

void move_left_to_right(ulong from, ulong to, ulong count);

Description

Moves count bytes from location from on the left side to location to on the right side.

�

move_right_to_left

Usage

#include "crunch.h"

void move_right_to_left(ulong from, ulong to, ulong count);

Description

Moves count bytes from right-side location from to left-side location to.

�

pop_hreg

Usage

#include "hfuncs.h"

void pop_hreg(hreg *register);

Description

Pops a register value from the pseudo-stack in the main CPU's memory, and puts it into register.

Remarks

See push_hreg().

�

push_hreg

Usage

#include "hfuncs.h"

void push_hreg(hreg *register);

Description

Pushes the value in register onto a psuedo-stack maintained in dynamically-allocated memory in the host CPU. It can later be popped with pop_hreg().

Example

hsetval(3,cv);

hsetval(4,dv);

push_hreg(cv);

pop_hreg(dv);	/* Now, cv and dv both contain 3 */

Remarks

push_hreg() and pop_hreg() offer a logical and convenient method for extending the memory capacity of the Cruncher board past its own 256K limit. Keep in mind, however, that host-to-Cruncher and Cruncher-to-host transfers are very slow compared to the Cruncher's processing speed. Using these functions in inner loops are likely to be catastrophic with regards to processing speed.

�

put_left

Usage

#include "crunch.h"

void put_left(ulong left_addr, uchar N);

Description

Puts the byte N at location left_addr in the Cruncher's left-side memory. See get_left()

�

put_right

Usage

#include "crunch.h"

void put_right(ulong right_addr, uchar N);

Description

Puts the byte N at location right�_addr in the Cruncher's right_side memory. See get_right().

�

restore_hreg

Usage

#include "hfuncs.h"

int restore_hreg(hreg *register,FILE *iostream);

Description

Reads a huge register from disk file iostream, and puts it into register. See save_hreg().

Return Value

Returns 1 if there was an error reading the disk file.

�

right_to_host

Usage

#include "crunch.h"

void right_to_host(ulong rightadd, void *hostadd, ulong count);

Description

Moves count bytes from rightadd in the Cruncher's right-side memory to location hostadd in the host CPU's memory.

�

save_hreg

Usage

#include "hfuncs.h"

void save_hreg(hreg *register, FILE *iostream);

Description

Copies the contents of register onto the disk file iostream. The effect of this routine is undone by restore_hreg().

Example

FILE *data;

.

data = fopen("test","w+");	/* Open for read & write */

.

hsetval(123,av);

hsetval(321,bv);

save_hreg(av,data);

save_hreg(bv,data);

rewind(data);

restore(xv,data);	/* xv = 123 */

restore(yv,data);	/* yv = 321 */

�

shdisp

Usage

#include "hfuncs.h"

#include <stdio.h>

int shdisp(char *buffer,hreg *reg);

Description

Similar to hdisp(), but it puts the display of the register's contents into memory location buffer instead of sending it to the monitor.

Example

#include "hfuncs.h"

main()

{

char buffer[100];

hsetval(19,dv);

shdisp(buffer,dv);

}

Return Value

The return value is the number of characters placed in the buffer, not including the terminating '\0'.

�

shdispa

Usage

#include "hfuncs.h"

int shdispa(char *buffer, hreg *reg);

Description

Similar to hdispa(), but it puts the output in buffer instead of sending it to the monitor.

Return Value

The return value is the number of characters placed in the buffer, not including the terminating '\0'.

�

shdispx

Usage

#include "hfuncs.h"

int fhdispx(char *buffer, hreg *reg);

Description

Similar to hdispx(), but it puts the output in buffer instead of sending it to the monitor.

Return Value

The return value is the number of characters placed in the buffer.

�

zero_right

Usage

#include "crunch.h"

void zero_right(ulong address, ulong count);

Description

Zeroes count bytes starting at location address in the right-side memory.

�

�PAGE �

�PAGE �4�

